Novel Oral PTH (1-34) formulation with reduced pharmacokinetic variability

Gregory Burshtein 1, Ehud Arbit 1, Ariel Rothner 1, Hillel Galitzer 1, Jonathan C. Y. Tang 2, William D. Fraser 2, Joseph Caraco 3

1Entera Bio Ltd., Israel, 2Bioanalytical Facility, Biomedical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK, 3Hadassah Clinical Research Center, Israel

BACKGROUND

The oral absorption of polypeptides is characterized by high dose-to-dose variability due to their low bioavailability. As a result, maintaining the blood drug levels within the therapeutic window is very challenging. An orally administered PTH may have prodigious advantages in the treatment of bone related disorders due to improved patient compliance and adherence. However, in order for PTH, a drug whose specific PK profile is critical for its physiological activity, to be effective and safe, a consistent and reproducible absorption profile is essential.

Enterabio previously developed and presented an oral formulation of PTH(1-34) that achieved biologically relevant plasma concentrations of the drug similar to those of the commercial SC injection. In anticipation of entering more advanced clinical studies, further development of oral PTH(1-34) formulation was performed focusing on the control of the drug absorption while minimizing its variability. The main source of high variability was revealed through numerous in vitro and preclinical studies resulting in the development of a novel and improved oral PTH (1-34) formulation.

We now present results from a clinical study utilizing the novel formulation technology in our oral PTH (1-34) tablets with decreased inter-subject variability and an absorption profile close to that of the commercially available injectable PTH (1-34).

STUDY DESIGN

A Phase I, open label, crossover pharmacokinetic study was conducted at the Hadassah Clinical Research Center at the Hebrew University – Hadassah Medical Center. Ten healthy male volunteers were included in the study receiving a commercial PTH (1-34) SC formulation and Enterabio’s original and modified oral PTH (1-34) formulations. Blood samples were analyzed externally at the Bioanalytical Facility at the University of East Anglia by validated chemiluminescence based assay on the IDS-ISYS automated analyzer.

RESULTS

The pharmacokinetic profile of oral PTH (1-34) is characterized by rapid absorption and elimination rates of the drug. The maximal plasma concentration (Cmax) of the modified oral formulation was slightly greater than the Cmax of the injectable formulation (236 ± 114 vs 184 ± 83 pg/ml, mean ± SD) (Table 1).

SAFETY

The safety profile of Enterabio’s modified formulation was consistent with previous studies. The study drug was very safe and well tolerated with no drug related adverse events reported.

CONCLUSIONS

Modification of the original Enterabio oral delivery system of PTH (1-34) resulted in significantly reduced variability in both the Cmax values and the total drug exposure, AUC. Presented results focused on Cmax which is the most relevant factor for determining biological activation of anabolic pathways and calcium regulation. In the specific case of Enterabio’s oral PTH (1-34) delivery system, this essential ‘sharp and short’ exposure to the drug is achieved due to the fast absorption of the molecule and its rapid elimination from the body.

Reduced inter-subject Cmax variability achieved by the modified dosage form, which is close to the levels of variability achieved by subcutaneous injection and comparable to the variability of commercially available small molecule drugs, ensures an improved safety profile of oral PTH (1-34) on the one hand and biologically effective blood concentrations of the drug on the other hand. These together with the expected improvement in compliance significantly enhance the potential of Enterabio’s oral PTH (1-34) becoming a clinical success.